WCGALP 11TH World Congress on Genetics applied to Livestock Production February 11 -16 | Auckland, New Zealand

www.wcgalp.com

Genetic analysis of heat tolerance for production and health traits in US Holstein cows

A. Sigdel¹, I. Aguilar², R. Abdollahi-Arpanahi^{1,3} and F. Peñagaricano¹

¹Department of Animal Sciences, University of Florida, USA ²Instituto Nacional de Investigación Agropecuaria, Uruguay ³Department of Animal and Poultry Science, University of Tehran, Iran

Introduction

- \checkmark Cows are most efficient at 40 to 70 $^{\rm 0}{\rm F}$
- ✓ Daily temperature above 85 ⁰F leads to heat stress in dairy cows
- High temperature and high humidity has profound effects on dairy cows
 - reduces DMI
 - decreases milk yield
 - depresses fertility
 - increases incidence of health

disorders

Introduction

- ✓ Temperature-humidity index (THI) determines heat stress potential in dairy cattle
- ✓ Derived by an equation from RH and air temperature for a particular day
- THI (t, rh) = $(1.8 \times t^{\circ}c + 32) (0.55 0.0055 \times rh) \times (1.8 \times t^{\circ}c 26)$
- ✓ Minimum heat stress threshold of 68 for high producing dairy cows (≥ 35 kg/day)

Themp	Themperature			% Relative Humidity																
°F	°c	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
72	22.0	64	65	65	65	66	66	67	67	67	68	68	69	69	69	70	70	70	71	71
73	23.0	65	65	66	66	66	67	67		68	68	69	69	70	70	71	71	71	72	72
74	23.5	65	66	66	67	67	67	68	\sim	69	69	70	70	70	71	71	72	72	73	73
75	24.0	66	66	67	67	68	68	Ser.	69	69	70	70	71	71	72	72	73	73	74	74
76	24.5	66	67	67	68	68	69	<u> </u>	70	70	71	71	72	72	73	73	74	74	75	75
77	25.0	67	67	68	68	69	<u>4</u> 00	70	70	71	71	72	72	73	73	74	74	75	75	76
78	25.5	67	68	68	69	A'O) /0	70	71	71	72	73	25	74	74	75	75	76	76	77
79	26.0	67	68	69	69	Ś	70	71	71	72	73	730	52	74	75	76	76	77	77	78
80	26.5	68	69	69	Ch-	70	71	72	72	73	73		75	75	76	76	77	78	78	79
81	27.0	68	69	70	8	71	72	72	73	73	74	3.3	75	76	77	77	78	78	79	80
82	28.0	69	6%2	3	71	71	72	73	73	740	ØS.	75	76	77	77	78	79	79	80	81
83	28.5	69	70	71	71	72	73	73	74	S.	75	76	77	78	78	79	80	80	81	82
84	29.0	70	70	71	72	73	73	74	75	(92)	76	77	78	78	79	80	80	81	82	83
85	29.5	70	71	72	72	73	74	75	26	2 76	77	78	78	79	80	81	26	82	83	84
86	30.0	71	71	72	73	74	74	710		77	78	78	79	80	81	- 81	57	83	84	84
87	30.5	71	72	73	73	74	75	~	77	77	78	79	80	81	81	~ (*	283	84	85	85
88	31.0	72	72	73	74	75	N.	3/6	77	78	79	80	81	81	82(2	84	85	86	86
89	31.5	72	73	74	75	72	0	77	78	79	80	80	81	82	0	84	85	86	86	87
90	32.0	72	73	74	75		77	78	79	79	80	81	82	5	(Y	85	86	86	87	88
91	33.0	73	74	75	76	N.M	77	78	79	80	81	82	83	3	85	86	86	87	88	89
92	33.5	73	74	75	76	77	78	79	80	81	82	83	20	N _S	85	86	87	88	89	90
93	34.0	74	75	76	77	78	79	80	80	81	82	83	ິ	85	86	87	88	89	90	91
94	34.5	74	75	76	77	78	79	80	81	82	83	хe	86	86	87	88	89	90	91	9Z
95	35.0	75	76	77	78	79	80	81	82	83	- 54	20	86	87	88	89	90	91	92	93
96	35.5	75	76	77	78	79	80	81	82	83	2	86	87	88	89	90	91	926	93	94
97	36.0	76	Π	78	79	80	81	82	83	- 6	9	86	87	88	89	91	92	2	94	95
98	36.5	76	77	78	80	80	82	83	-	ര്	86	87	88	89	90	91	12	33	94	95
99	37.0	76	78	79	80	81	82	83	2	85	87	88	89	90	91	92	కా	94	95	96
100	38.0	77	78	79	81	82	83	84	2	86	87	88	90	91	92	\$	94	95	96	98
101	38.5	77	79	80	81	82	83	84	86	87	88	89	90	92	30	14	95	96	98	99
102	39.0	78	79	80	82	83	84	85	86	87	89	90	91	92		95	96	97	98	100
103	39.5	78	79	81	82	83	84	86	87	88	89	91	92	0	94	96	97	98	99	101
104	40.0	79	80	81	83	84	85	86	88	89	90	91	93	1	95	96	98	99	100	101
105	40.5	79	80	82	83	84	86	87	88	89	91	92	93	95	96	97	99	100	101	102
106	41.0	80	81	82	84	85	87	88	89	90	91	93	94	95	97	98	99	101	102	103
107	41.5	80	81	83	84	85	87	88	89	91	92	94	95	96	98	99	100	102	103	104

Heat Stress in the United States

Heat Stress Management

- Different cooling and nutritional strategies are used to alleviate effects of heat stress
- However, production continues to decline during summer
- ✓ Identifying heat tolerant cows and understanding biological mechanism of thermotolerance is critical for developing novel approach
- Breeding for thermotolerance is permanent, cumulative and cost effective approach

Estimate genetic components of milk yield (MY) and somatic cell score (SCS) across lactations considering heat stress

Identify and characterize genomic regions, and preferably individual genes and pathways responsible for heat tolerance in MY and SCS

different rates of performance decline

Aim: identify animals that under heat stress conditions show either none or low rates of performance decline or delayed onset of performance decline

differences on the onset of decline

Source: I. Misztall and collaborators (2000)

✓ Phenotype

	Cows, n	Records, n	Test days, n	Min, TD records	Mean \pm SD
MILK	17,522	254,215	278	8	35.87 <u>+</u> 8.26
SCS	18,975	355,546	293	5	1.96 <u>+</u> 1.81

- ✓ Genotype: 6k animals (1592 sires + 4770 cows) (60k SNP across the genome)
- ✓ Pedigree : 31k animals (A 5-generation pedigree from CDCB)
- ✓ Merge Test day records with weather records: mean daily THI of 3 days prior the test day (Bohmanova et al. (2007))

Model: Multi-trait Repeatability Test Day Model

 $y_{klmn} = \text{HTD}_{kl} + \text{DIM}_m + a_{(general)n} + v_n \left[\phi(THI) \right] + P_{(general)n} + q_n \left[\phi(THI) \right] + e_{klmn}$

Statistical Analysis

✓ A function of THI (ϕ (thi)) was created to estimate the effects of heat stress Φ (THI) = $\begin{cases} 0 \\ THI - THI_{Threshold} \end{cases}$

- Variance components and genetic parameters were estimated in Bayesian framework using GIBBS2F90 (Blupf90 family of programs)
- ✓ Heritability at heat stress level f(i) was calculated as:

$$h^{2} = \frac{\sigma_{a}^{2} + f(i)^{2} \sigma_{v}^{2} + 2f(i)\sigma_{av}}{\sigma_{a}^{2} + f(i)^{2} \sigma_{v}^{2} + 2f(i)\sigma_{av} + \sigma_{p}^{2} + f(i)^{2} \sigma_{q}^{2} + 2f(i)\sigma_{pq} + \sigma_{e}^{2}}$$

- **ssGWAS:** Genetic variance explained by 2.0Mb window of adjacent SNPs
- Gene set analysis
- 1. assignment of SNPs to genes
- criteria: SNP within the gene or at most 15kb either upstream/downstream the gene
- 2. assignment of **genes** to **functional categories**
- databases: Gene Ontology, Medical Subject Headings (MeSH)
- association analysis between each functional term and the phenotype of interest based on Fisher's exact test

Results and Discussion

- ✓ Variance component estimates
- ✓ GWAS
- ✓ Gene set analysis

MILK YIELD (MY)

Parameters	Parity1	Parity2	Parity3
σ_{a}^{2}	9.26	10.03	10.55
100σ² _v	0.94	1.56	1.62
10σ _{a.v}	-1.21	-1.17	-2.31
h ² _{f(10)}	0.32	0.24	0.17
r ^G (a,v)	-0.41	-0.30	-0.55
Cor-ht(par1,parj)		0.78	0.65
Cor-ht(par2,parj)			0.61
Cor-gen(par1,parj)		0.82	0.85
Cor-gen(par2,parj)			0.92

MILK YIELD (MY)

MILK YIELD (MY)

GO ID	GOTERM	No. of Genes	No. of Sig. Genes	P_value
GO:0034605	cellular response to heat	15	3	0.003
GO:0009266	response to temperature stimulus	33	3	0.027
GO:0080135	cellular response to stress	96	5	0.043
GO:2001020	response to DNA damage stimulus	35	3	0.032
GO:0050848	calcium-mediated signaling	15	3	0.003
GO:0048016	Inositol phosphate mediated signaling	14	2	0.030
GO:0009065	glutamine family amino acid catabolic process	9	2	0.013
MeSH ID	MeSH Term			
D018869	Heat-Shock Response	9	2	0.015
D050886	HSP20 Heat-Shock Proteins	2	1	0.004
D005982	Glutathione Transferase	50	4	0.002
D054732	Calcium-Calmodulin-Dependent Protein Kinase Type 2	13	2	0.002

SOMATIC CELL SCORE (SCS)

Parameters	Parity1	Parity2	Parity3
σ^2_a	0.27	0.28	0.38
100σ ² _ν	0.042	0.049	0.091
10σ _{a.v}	0.026	0.011	0.081
h ² _{f(10)}	0.11	0.10	0.15
r ^G (a v)	0.24	0.10	0.43
Cor-ht(par1,parj)		0.18	0.68
Cor-ht(par2,parj)			0.33
Cor-gen(par1,parj)		0.77	0.79
Cor-gen(par2,parj)			0.90

SOMATIC CELL SCORE (SCS)

SOMATIC CELL SCORE (SCS)

GO ID	GO TERM	No. of Genes	No. of Sig. Genes	P_value
GO:0061077	Chaperone-mediated protein folding	26	3	0.016
GO:0006260	DNA replication	57	4	0.031
GO:0050671	Positive regulation of lymphocyte proliferation	27	4	0.002
GO:0006909	phagocytosis	31	4	0.003
GO:0050727	Regulation of inflammatory response	56	4	0.029
GO:0042742	defense response to bacterium	41	4	0.007
MeSH ID	MeSH Term			
D008285	Major Histocompatibility Complex	14	2	0.036
D007113	Immunity Innate	35	4	0.004
D007375	Interleukin-1	29	3	0.012

- Reinforces the idea that relationship of production with thermotolerance is antagonistic
- Continued selection for general merit will result in greater susceptibility to heat stress
- GWAS and Gene set analysis: list of putative candidate regions and genes with known roles in general merit and heat tolerance identified

Fernanda Rezende, Rocío Amorín, Julio Agustin

